经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如下:
罗非鱼的汞含量(ppm)
![]() |
![]() |
![]() |
![]() |
《中华人民共和国环境保护法》规定食品的汞含量不得超过ppm.
(1)检查人员从这条鱼中,随机抽出
条,求
条中恰有
条汞含量超标的概率;
(2)若从这批数量很大的鱼中任选条鱼,记
表示抽到的汞含量超标的鱼的条数.以此
条鱼的样本数据来估计这批数量很大的鱼的总体数据,求
的分布列及数学期望
.
已知角的顶点与原点重合,始边与
轴非负半轴重合而终边经过点
.
(1)求的值;(2)求
的值.
已知,点
在函数
的图象上,其中
(1)证明:数列是等比数列,并求数列
的通项公式;
(2)记,求数列
的前
项和
.
森林失火了,火正以的速度顺风蔓延,消防站接到报警后立即派消防员前去,在失火后
到达现场开始救火,已知消防队在现场每人每分钟平均可灭火
,所消耗的灭火材料、劳务津贴等费用每人每分钟
元,另附加每次救火所损耗的车辆、器械和装备等费用平均每人
元,而每烧毁
森林的损失费为
元,设消防队派了
名消防员前去救火,从到达现场开始救火到火全部扑灭共耗时
.
(1)求出与
的关系式;
(2)问为何值时,才能使总损失最小.
已知的最小正周期为
.
(Ⅰ)当时,求函数
的最小值;
(Ⅱ)在,若
,且
,求
的值.
已知函数是定义在
上的偶函数,且当
时,
.
(1)写出函数在
的解析式;
(2)若函数,求函数
的最小值.