森林失火了,火正以的速度顺风蔓延,消防站接到报警后立即派消防员前去,在失火后
到达现场开始救火,已知消防队在现场每人每分钟平均可灭火
,所消耗的灭火材料、劳务津贴等费用每人每分钟
元,另附加每次救火所损耗的车辆、器械和装备等费用平均每人
元,而每烧毁
森林的损失费为
元,设消防队派了
名消防员前去救火,从到达现场开始救火到火全部扑灭共耗时
.
(1)求出与
的关系式;
(2)问为何值时,才能使总损失最小.
(本小题满分12分)如图,为圆O的直径,
是圆
上不同于
,
的动点,四边形
为矩形,且
,平面
平面
.
(1)求证:平面
.
(2)当点在
的什么位置时,四棱锥
的体积为
.
(本小题满分12分)设二次函数,关于
的不等式
的解集有且只有一个元素.
(1)设数列的前
项和
,求数列
的通项公式;
(2)记,求数列
中是否存在不同的三项能组成等比数列?请说明理由.
已知函数的部分图象如图所示,
是图象的最高点,
为图象与
轴的交点,
为坐标原点,若
(1)求函数的解析式,
(2)将函数的图象向右平移2个单位后得到函数
的图象,当
时,求函数
的值域.
已知函数
(1)求函数的单调区间;
(2)当时,过原点分别作曲线
和
的切线
,已知两切线的斜率互为倒数,证明:
;
(3)设,当
时,求实数
的取值范围.
(本小题满分14分)已知椭圆(
)的左、右顶点分别为
,
,
且,
为椭圆上异于
,
的点,
和
的斜率之积为
.
(1)求椭圆的标准方程;
(2)设为椭圆中心,
,
是椭圆上异于顶点的两个动点,求
面积的最大值.