某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
其中
为常数。己知销售价格为5元/千克时,每日可售出该商品11千克。
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。
选修4-4:坐标系与参数方程
已知直线的参数方程为
(t为参数),若以平面直角坐标系
的O点为极点,
轴正半轴为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为
。
(1)求直线的倾斜角;
(2)若直线与曲线C交于不同的两点A,B,求AB的长。
选修4-1:几何证明选讲
如图,⊙O是以AB为直径的△ABC的外接圆,点D是劣弧的中点,连结AD并延长与过点C的切线交于点P,OD与BC相交于点E。
(1)求证:;
(2)求证:
已知函数在
上为增函数,
(1)求的值; (2)若
在
上为单调函数,求
的取值范围;
(3)设,若在
上至少存在一个
,使得
成立,求
的范围。
如图,设抛物线的焦点为
,动点
在直线
上
运动,过P作抛物线C的两条切线PA,PB,且与抛物线C分别相切于A,B两点.
(1)求△APB的重心G的轨迹方程.
(2)证明∠PFA=∠PFB.
已知正方形ABCD的边长为2,,
将正方形ABCD沿对角线BD折起,使,得到三棱锥
,如图所示。
(1)当a=2时,求证:平面BCD;
(2)当二面角的大小为
时,
求二面角的正切值。