在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N(60,100),已知成绩在90分以上(含90分)的学生有13人.
(1)求此次参加竞赛的学生总数共有多少人?
(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少?
已知等比数列中,
,公比
,
又恰为一个等差数列的第7项,第3项和第1项.
(1)求数列的通项公式;
(2)设,求数列
如图,在三棱锥中,直线
平面
,且
,又点
,
,
分别是线段
,
,
的中点,且点
是线段
上的动点.
(1)证明:直线平面
;
(2)若,求二面角
的平面角的余弦值.
已知函数,x∈R.
(1)求函数f(x)的最小正周期及对称轴方程;
(2)当时,求函数f(x)的最大值和最小值及相应的x值.
已知圆心在第二象限内,半径为的圆
与
轴交于
和
两点.
(1)求圆的方程;
(2)求圆的过点A(1,6)的切线方程;
(3)已知点N(9,2)在(2)中的切线上,过点A作N的垂线,垂足为M,点H为线段AM上异于两个端点的动点,以点H为中点的弦与圆交于点B,C,过B,C两点分别作圆的切线,两切线交于点P,求直线
的斜率与直线PN的斜率之积.
如图,,
是两个小区的所在地,
,
到一条公路
的垂直距离
km,
km,
两端之间的距离为4km.某公交公司将在
之间找一点
,在
处建造一个公交站台.
(1)设,试写出用
表示
正切的函数关系式,并给出
的范围;
(2)是否存在,使得
与
相等.若存在,请求出
的值;若不存在,请说明理由.