某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验。
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线
性回归方程
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
函数
(1)
时,求函数
的单调区间;
(2)
时,求函数
在
上的最大值.
抛物线
与直线
相切,
是抛物线上两个动点,
为抛物线的焦点,
的垂直平分线
与
轴交于点
,且
.
(1)求
的值;
(2)求点
的坐标;
(3)求直线
的斜率
的取值范围.
设等差数列
的前
项和
,且
,
.
(1)求数列
的通项公式;
(2)若数列满足
,求数列
的前
项和
.
如图,在三棱柱
中,侧棱
底面
,
,
,
,
.
(1)证明:
平面
;
(2)若
是棱
的中点,在棱
上是否存在一点
,使
平面
?证明你的结论.
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.
(1)求取出的两个球上标号为相邻整数的概率;
(2)求取出的两个球上标号之和能被3整除的概率