“蛟龙号”从海底中带回的某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为,乙组能使生物成活的概率为
,假定试验后生物成活,则称该试验成功,如果生物不成活,则称该次试验是失败的.
(1)甲小组做了三次试验,求至少两次试验成功的概率;
(2)如果乙小组成功了4次才停止试验,求乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率;
(3)若甲乙两小组各进行2次试验,设试验成功的总次数为,求
的期望.
4-5:不等式选讲(本小题满分10分)
已知函数.
(1)若是定义域为
的奇函数,试求实数
的值;
(2)在(1)的条件下,若函数有三个零点,试求实数
的取值范围.
4-4:坐标系与参数方程(本小题满分10分)
在直角坐标系中,曲线
的参数方程为
,在极坐标系中,曲线
的极坐标
方程为.
(1)求曲线的普通方程;
(2)设与
相交于
两点,求
的长.
4-1:几何证明选讲(本小题满分10分)
如图,已知与圆
相切于点
,经过点
的割线
交圆
于点
、
,
的平分线分别
交、
于点
、
.
(1)证明:;
(2)若,求
的值.
已知函数在点
处的切线与
轴平行。
(1)求实数的值;
(2)证明:。
(本小题满分12分)在平面直角坐标系中,
两点的坐标分别为
、
,动点
满足:直线
与直线
的斜率之积为
.
(1)求动点的轨迹方程;
(2)设为动点
的轨迹的左右顶点,
为直线
上的一动点(点
不在x轴上),连[
交
的轨迹于
点,连
并延长交
的轨迹于
点,试问直线
是否过定点?若成立,请求出该定点坐标,若不成立,请说明理由.