设不等式组表示的区域为
,不等式
表示的平面区域为
.
(1)若与
有且只有一个公共点,则
=;
(2)记为
与
公共部分的面积,则函数
的取值范围是.
(本小题满分12分)
设双曲线与直线
交于两个不同的点
,求双曲线
的离心率
的取值范围.
(本小题满分10分)
设命题,命题
,若“
”为假命题,“
”为真命题,求实数
的取值范围.
在平面直角坐标系中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).
(Ⅰ)求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
求标准方程:
(1)若椭圆长轴长与短轴长之比为2,它的一个焦点是, 求椭圆的标准方程;
(2)若双曲线的渐近线方程为,它的一个焦点是
,求双曲线的标准方程。
如图, 直线y=x与抛物线y=
x2-4交于A、B两点, 线段AB的垂直平分线与直线y=-5交于Q点.
(1)求点Q的坐标;
(2)当P为抛物线上位于线段AB下方
(含A、B)的动点时, 求ΔOPQ面积的最大值.