如图,圆与直线
相切于点
,与
正半轴交于点
,与直线
在第一象限的交点为
.点
为圆
上任一点,且满足
,动点
的轨迹记为曲线
.
(1)求圆的方程及曲线
的方程;
(2)若两条直线和
分别交曲线
于点
、
和
、
,求四边形
面积的最大值,并求此时的
的值.
(3)证明:曲线为椭圆,并求椭圆
的焦点坐标.
化简求值.
(1)log2+log212-
log242-1;
(2)(lg2)2+lg2·lg50+lg25;
(3)(log32+log92)·(log43+log83).
已知函数f(x)=logax(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围.
比较下列各组数的大小.
(1)log3与log5
;
(2)log1.1 0.7与log1.20.7;
(3)已知logb<log
a<log
c,比较2b,2a,2c的大小关系.
计算:(1)
(2)2(lg)2+lg
·lg5+
;
(3)lg
-
lg
+lg
.
已知函数f(x)=(ax-a-x) (a>0,且a≠1).
(1)判断f(x)的单调性;
(2)验证性质f(-x)=-f(x),当x∈(-1,1)时,并应用该性质求满足f(1-m)+f(1-m2)<0的实数m的范围.