游客
题文

问题提出:如图①,将一张直角三角形纸片折叠,使点与点重合,这时为折痕,为等腰三角形;再继续将纸片沿的对称轴折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.

知识运用:
(1)如图②,正方形网格中的能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;
(2)如图③,在正方形网格中,以给定的为一边,画出一个斜三角形,使其顶点在格点上,且折成的“叠加矩形”为正方形;
(3)若一个锐角三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?结合图③,说明理由。
拓展应用:
(4)如果一个四边形一定能折成"叠加矩形",那么它必须满足的条件是什么?

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

已知反比例函数与一次函数y=3x-m,当时,这两个函数的函数值相等,求这两个函数的解析式.

已知y与x成反比例,且当x=-3时,y=7,求y关于x的函数解析式.

已知y是x的反比例函数,且x=2时,y=-3,确定此函数的解析式,并求当y=-8时,自变量x的值.

已知:
(1)当m为何值时,y是x的正比例函数?
(2)当m为何值时,y是x的二次函数?
(3)当m为何值时,y是x的反比例函数?

在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”.例如点(-1,-1),(0,0),(),……都是“梦之点”,显然,这样的“梦之点”有无数个.
(1)若点P(2,m)是反比例函数(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;
(2)函数y=3kx+s-1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;
(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”A(x1,y1),B(x2,y2),且满足-2<x1<2,|x1-x2|=2,令,试求t的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号