某菜农搭建了一个横截面为抛物线的大棚,尺寸如图:
(1)如图建立平面直角坐标系,使抛物线对称轴为y轴,求该抛物线的解析式;
(2)若需要开一个截面为矩形的门(如图所示),已知门的高度为1.60米,那么门的宽度最大是多少米(不考虑材料厚度)?(结果保留根号)
先化简:,当
时,再从-2<
<2的范围内选取一个合适的整数
代入求值.
如图1是三个边长为2的正方形小方格,反比例函数经过正方形
格点D,与小方格交与点E、点F,直线EF的解析式为y="mx+a." 如图2所示的△ABC为Rt△,∠B=90°,AB=10厘米,BC=a厘米。
(1)求反比例函数的解析式。
(2)求一次函数的解析式。
(3)已知点P从点A出发沿AB边向点B以1厘米/秒的速度移动,点Q从点B出发沿BC边向点C以2厘米/秒的速度移动,如果P、Q两点同时出发,几秒种后,△BPQ的面积与是△ABC的面积一半?
商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库
存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多
售出 2件.设每件商品降价x元. 据此规律,请回答:
(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
已知关于x的方程X2+2KX+K2+2K-2=0.
(1)若这个方程有实数根,求k的取值范围;
(2)若以方程X2+2KX+K2+2K-2=0的两个根为横坐标、纵坐标的点恰在反比例函数的
图象上,求满足条件的m的最小值.
如图,已知中,
,
是高
和高
的交点.
求证: DF = CD