如图所示,一次函数y=k1x+b与反比例函数y=(x<0)的图象相交于A,B两点,且与坐标轴的交点为(–6,0),(0,6),点B的横坐标为–4.
(1)试确定反比例函数的解析式;
(2)求△AOB的面积;
(3)直接写出不等式k1x+b>的解.
如图,△ABC三个顶点坐标分别为A (1,2),B (3,1),C (2,3),以原点O为位似中心,将△ABC放大为原来的2倍得△A′B′C′.
(1)在图中第一象限内画出符合要求的△A′B′C′;(不要求写画法)
(2)△A′B′C′的面积是: .
已知到直线l的距离等于a的所有点的集合是与直线l平行且距离为a的两条直线l1、l2(如图①).
(1)在图②的平面直角坐标系中,画出到直线y=x+2的距离为1的所有点的集合的图形.并写出该图形与y轴交点的坐标.
(2)试探讨在以坐标原点O为圆心,r为半径的圆上,到直线y=x+2的距离为1的点的个数与r的关系.
(3)如图③,若以坐标原点O为圆心,2为半径的圆上只有两个点到直线y=x+b的距离为1,则b的取值范围为 .
如图,△ABC内接于⊙O,AB 是直径,过点A作直线MN,且∠MAC=∠ABC.
(1)求证:MN是⊙O的切线;
(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.
①求证:FD=FG.
②若BC=2,AB=3,试求AE的长.
在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,每套盈利40元。为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套.
(1)要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?
(2)每套吉祥物降价多少元时,才能使每天的利润最大,最大利润为多少元?
某校决定对初三学生进行体育成绩测试,成绩记入总分,同学们将根据自己平时的运动成绩确定自己的参考项目,下面是小亮同学的两个项目立定跳远和一分钟跳绳在近期连续五次测试的得分情况(立定跳远得分统计表和一分钟跳绳得分折线图):
立定跳远得分统计表
测试日期 |
星期一 |
星期二 |
星期三 |
星期四 |
星期五 |
得分 |
8 |
10 |
8 |
9 |
5 |
(1)请根据以上信息,分别将这两个项目的平均数、极差、方差填入下表:
统计量 |
平均数 |
极差 |
方差 |
立定跳远 |
8 |
||
一分钟跳绳 |
2 |
0.4 |
(2)根据以上信息,你认为在立定跳远和一分钟跳绳这两个项目中,小亮应选择哪个项目作为体育考试的参考项目?请简述理由.