从数列中抽出一些项,依原来的顺序组成的新数列叫数列
的一个子列.
(1)写出数列的一个是等比数列的子列;
(2)若是无穷等比数列,首项
,公比
且
,则数列
是否存在一个子列
为无穷等差数列?若存在,写出该子列的通项公式;若不存在,证明你的结论.
已知且
,当
时,恒有
求的解析式;
若的解集为空集,求
的范围。
已知曲线:
,数列
的首项
,且
当时,点
恒在曲线
上,数列{
}满足
(1)试判断数列是否是等差数列?并说明理由;
(2)求数列和
的通项公式;
(3)设数列满足
,试比较数列
的前
项和
与
的大小.
己知椭圆的离心率为
,
是椭圆的左右顶点,
是椭圆的上下顶点,四边形
的面积为
.
(1)求椭圆的方程;
(2)圆过
两点.当圆心
与原点
的距离最小时,求圆
的方程.
在三棱锥中,
和
都是边长为
的等边三角形,
,
分别是
的中点.
(1)求证:平面
;
(2)求证:平面⊥平面
;
(3)求三棱锥的体积.
某车间将名技工平均分为甲、乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
1号 |
2号 |
3号 |
4号 |
5号 |
|
甲组 |
4 |
5 |
7 |
9 |
10 |
乙组 |
5 |
6 |
7 |
8 |
9 |
(1)分别求出甲、乙两组技工在单位时间内完成合格零件的平均数及方差,并由此比较两组技工的技术水平;
(2)质检部门从该车间甲、乙两组中各随机抽取名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过
件,则称该车间“质量合格”,求该车间“质量合格”的概率.