(1)已知定点
、
,动点N满足
(O为坐标原点),
,
,
,求点P的轨迹方程.
(2)如图,已知椭圆
的上、下顶点分别为
,点
在椭圆上,且异于点
,直线
与直线
分别交于点
,
(ⅰ)设直线
的斜率分别为
、
,求证:
为定值;
(ⅱ)当点
运动时,以
为直径的圆是否经过定点?请证明你的结论.
(本小题满分14分)
图为一简单组合体,其底面ABCD为正方形,
平面
,
,
且
,
(1)求证:
//平面
;
(2)若N为线段
的中点,求证:
平面
;
(本小题满分12分)某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行长期的调查,得到的统计数据如下表所示:
| 积极参加班级工作 |
不太主动参加班级工作 |
合计 |
|
| 学习积极性高 |
18 |
7 |
25 |
| 学习积极性一般 |
6 |
19 |
25 |
| 合计 |
24 |
26 |
50 |
(1)如果随机调查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是
多少?抽到不太积极参加班级工作且学习积极性一般的学生的概率是多少?
(2)学生的积极性与对待班级工作的态度是否有关系?说明理由.
函数
的部分图象如图所示
(1)求
的最小正周期及解析式;
(2)设
求函数
在区间
上的最大值和最小值.
已知圆o:
与椭圆
有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.
(1)求椭圆方程。
(2)圆o与x轴的两个交点为C、D,B
是椭圆上异于点A的一个动点,在线段CD上是否存在点T
,使
,若存在,请说明理由。
、已知函数
R
,
.
(1)若a=2,求函数
的单调区间
(2)
(3) 若关于
的方程
为自然对数的底数)只有一个实数根, 求
的值.