设函数
(1)若,求函数
在
上的最小值;
(2)若函数在
存在单调递增区间,试求实数
的取值范围;
(3)求函数的极值点.
(本小题满分12分)设,
分别是椭圆
的左右焦点,M是C上一点且
与x轴垂直,直线
与C的另一个交点为N.
(Ⅰ)若直线MN的斜率为,求C的离心率;
(Ⅱ)若直线MN在y轴上的截距为2,且,求a,b.
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点.
(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;
(Ⅱ)试问在线段BC上是否存在点M,使DM//面POB,如存在,指出M的位置,如不存在,说明理由.
(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)从这所学校报考飞行员的同学中任选一人,求这个人体重超过60公斤的概率.
(本小题满分12分)根据下列算法语句,将输出的A值依次记为
(Ⅰ)求数列的通项公式;
(Ⅱ)已知函数的最小正周期是
,且函数
的图象关于直线
对称,求函数
在区间
上的值域.
(本小题满分10分)(选修4—5,:不等式选讲)
(Ⅰ)证明柯西不等式:;
(Ⅱ)若且
,用柯西不等式求
+
的最大值.