游客
题文

(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.

(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)从这所学校报考飞行员的同学中任选一人,求这个人体重超过60公斤的概率.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本题满分15分) 已知直线l1xmy与抛物线C:y2=4x交于O (坐标原点),A两点,直线l2xmym 与抛物线C交于BD点.
(Ⅰ) 若 | BD | = 2 | OA |,求实数m的值;
(Ⅱ) 过ABD分别作y轴的垂线,垂足分别为A1B1D1.记S1S2分别为三角形OAA1和四边形BB1D1D的面积,求的取值范围.

(本题满分15分) 已知实数a满足1<a≤2,设函数f (x)=x3x2ax
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,
求证:g(x)的极大值小于等于10.

(本题满分14分) 如图,在三棱柱BCDB1C1D1与四棱锥ABB1D1D的组合体中,已知BB1⊥平面BCD,四边形ABCD是平行四边形,∠ABC=120°,ABAD=3,BB1=1.
(Ⅰ) 设O是线段BD的中点,
求证:C1O∥平面AB1D1
(Ⅱ) 求直线AB1与平面ADD1所成的角.

(本题满分14分) 设首项为a1,公差为d的等差数列{an}的前n项和为Sn
已知a7=-2,S5=30.
(Ⅰ) 求a1d
(Ⅱ) 若数列{bn}满足an(n∈N*),
求数列{bn}的通项公式

(本题满分14分)在锐角△ABC中,cos B+cos (AC)=sin C.
(Ⅰ) 求角A的大小;
(Ⅱ) 当BC=2时,求△ABC面积的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号