生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 |
![]() |
![]() |
![]() |
![]() |
![]() |
元件A |
8 |
12 |
40 |
32] |
8 |
元件B |
7 |
18 |
40 |
29 |
6 |
(1)试分别估计元件A、元件B为正品的概率;
(2)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下;
(i)求生产5件元件B所获得的利润不少于300元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.
(在某次测验中,有6位同学的平均成绩为75分.用表示编号为
的同学所得成绩,且前5位同学的成绩如下:
编号n |
1 |
2 |
3 |
4 |
5 |
成绩![]() |
70 |
76 |
72 |
70 |
72 |
(1)求第6位同学成绩,及这6位同学成绩的标准差
;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间中的概率.
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。
(1)求证:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积
在△ABC中,内角A,B,C的对边分别为a,b,c.已知.
(1)求的值;
(2)若cosB=,△
已知数列的首项
(1)证明:数列是等比数列;
(2)若数列的前n项和为
,试比较
与
的大小。
设动点到定点F(0,1)的距离比它到x轴的距离大1,记点P的轨迹为曲线C。
(1)求点P的轨迹方程;
(2)若圆心在曲线C上的动圆M过点A(0,2),试证明圆M与x轴必相交,且截x轴所得的弦长为定值。