一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,
在半圆上),设
,木梁的体积为V(单位:m3),表面积为S(单位:m2).
(1)求V关于θ的函数表达式;
(2)求的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
如图,在正方体ABCD-A1B1C1D1中,
(1)如果连接交
于点
,证明
平面
(2)求直线与平面
所成的角.
如图,空间四边形ABCD中,,
,
分别是AB,BC,CD的中点,求证:
(1)AC∥平面;
(2)BD∥平面.
已知函数f ()=
, 若
2)=1;
(1) 求a的值; (2)解不等式.
(本小题满分12分)已知,其中
均为实数,
(Ⅰ)求的极值;
(Ⅱ)设,
求证:对恒成立;
(Ⅲ)设,若对
给定的
,在区间
上总存在
使得
成立,求m的取值范围.
(本小题满分12分)如图,椭圆的右焦点与抛物线
的焦点重合,过
且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足
(O为坐标原点),求实数t的取值范围.