在平面直角坐标系中,已知直线的参数方程是(为参数);以为极点,轴正半轴为极轴的极坐标系中,圆的极坐标方程为.
(1)写出直线的普通方程与圆的直角坐标方程;
(2)由直线上的点向圆引切线,求切线长的最小值.
已知.
(1)求函数的图像在
处的切线方程;
(2)设实数,求函数
在
上的最大值
(3)证明对一切,都有
成立.
如图,在矩形中,
,以
为圆心1为半径的圆与
交于
(圆弧
为圆在矩形内的部分)
(1)在圆弧上确定
点的位置,使过
的切线
平分矩形ABCD的面积;
(2)若动圆与满足题(1)的切线
及边
都相切,试确定
的位置,使圆
为矩形内部面积最大的圆.
(本小题满分15分)平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含的式子表示);
(2)已知椭圆(其中
)的左、右顶点分别为D、B,
⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.
(本小题满分16分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是等腰梯形,其中高0.5米,AB=1米, CD=2a(a>)米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和CD平行的伸缩横杆.
(1)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数;
(2)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.
(本小题满分16分)设函数f(x)=x4+bx2+cx+d,当x=t1时,f(x)有极小值.
(1)若b=-6时,函数f(x)有极大值,求实数c的取值范围;
(2)在(1)的条件下,若存在实数c,使函数f(x)在闭区间[m-2,m+2]上单调递增,求实数m的取值范围;
(3)若函数f(x)只有一个极值点,且存在t2∈(t1,t1+1),使f ′(t2)=0,证明:函数g(x)=f(x)-x2+t1x在区间(t1,t2)内最多有一个零点.