某工厂生产、
两种元件,其质量按测试指标划分为:大于或等于
为正品,小于
为次品.现从一批产品中随机抽取这两种元件各
件进行检测,检测结果记录如下:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
B |
![]() |
![]() |
![]() |
![]() |
![]() |
由于表格被污损,数据、
看不清,统计员只记得
,且
、
两种元件的检测数据的平均值相等,方差也相等.
(1)求表格中与
的值;
(2)从被检测的件
种元件中任取
件,求
件都为正品的概率.
已知函数.
(1)若,求曲线
在点
处的切线方程;
(2)求函数的单调区间;
(3)设函数.若至少存在一个
,使得
成立,求实数
的取值范围.
已知,
,
.
(1)当时,试比较
与
的大小关系;
(2)猜想与
的大小关系,并给出证明.
已知在的展开式中,第5项的系数与第3项的系数之比是
.
(1)求展开式中的所有有理项;
(2)求展开式中系数绝对值最大的项;
(3)求的值.
由数字1、2、3、4、5、6组成无重复数字的数中,求:
(1)六位偶数的个数;
(2)求三个偶数互不相邻的六位数的个数;
(3)求恰有两个偶数相邻的六位数的个数;
(4)奇数字从左到右,从小到大依次排列的六位数的个数.
已知复数,
(
,
是虚数单位).
(1)若复数在复平面上对应点落在第一象限,求实数
的取值范围;
(2)若虚数是实系数一元二次方程
的根,求实数
值.