某市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的被淘汰.若有500人参加测试,学生成绩的频率分布直方图如图.
(1)求获得参赛资格的人数;
(2)根据频率直方图,估算这500名学生测试的平均成绩;
(3)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响.已知他连续两次答错的概率为,求甲在初赛中答题个数
的分布列及数学期望
.
在长方体中,
,
点是
的中点,点
是
的中点.
(Ⅰ)求证: 平面
;
(Ⅱ)求异面直线和
所成的角余弦值;
(Ⅲ)过三点的平面把长方体
截成
两部分几何体, 求所截成的两部分几何体的体积的比值.
设函数的定义域为
.
(I),求使
的概率;
(II),求使
的概率.
已知△的周长为
,且
.
(1)求边长的值;
(2)若,求
的正切值.
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和
,且各株大树是否成活互不影响.求移栽的4株大树中:
(1)两种大树各成活1株的概率;
(2)成活的株数的分布列与期望.
已知向量,设函数
。
(1)求的最小正周期与单调递减区间
(2)在中,
、
、
分别是角
、
、
的对边,若
的面积为
,求
的值。