已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD.
⑴确定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.
设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;
(3)写出(-∞,+∞)内函数f(x)的单调区间.
从集合中任取三个元素构成三元有序数组
,规定
.
(1)从所有的三元有序数组中任选一个,求它的所有元素之和等于10的概率
(2)定义三元有序数组的“项标距离”为
(其中
),从所有的三元有序数组中任选一个,求它的“项标距离”d为偶数的概率.
设对于任意实数x,不等式|x+7|+|x-1|≥m恒成立.
(1)求m的取值范围;
(2)当m取最大值时,解关于x的不等式|x-3|-2x≤2m-12.
设数列为等差数列,且a3=5,a5=9;数列
的前n项和为Sn,且Sn+bn="2."
(1)求数列,
的通项公式;
(2)若为数列
的前n项和,求
.
设函数f (x) =.
(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求g (x)在区间
上的值域.