已知中心在坐标原点,焦点在轴上的椭圆过点
,且它的离心率
.
(1)求椭圆的标准方程;
(2)与圆相切的直线
交椭圆于
两点,若椭圆上一点
满足
,求实数
的取值范围.
已知向量,
,函数
(1)求的单调递增区间;
(2)若不等式都成立,求实数m的最大值.
设函数.
(1)若曲线在点
处与直线
相切,求
的值;
(2)求函数的单调区间与极值点.
(3)设函数的导函数是
,当
时求证:对任意
成立
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为
,右顶点为
,设点
.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段
中点
的轨迹方程;
如图(1),是等腰直角三角形,其中
,
分别为
的中点,将
沿
折起,点
的位置变为点
,已知点
在平面
上的射影
为
的中点,如图(2)所示.
(1)求证:;
(2)求三棱锥的体积.
随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:)获得身高数据的茎叶图如下:
(1)根据茎叶图判断哪个班的平均身高较高。
(2)计算甲班的样本方差。
(3)现从甲乙两班同学中各随机抽取一名身高不低于的同学,求至少有一名身高大于
的同学被抽中的概率。