如图1,在直角梯形中,
,
,且
.
现以为一边向梯形外作正方形
,然后沿边
将正方形
翻折,使平面
与平面
垂直,
为
的中点,如图2.
(1)求证:∥平面
;
(2)求证:;
(3)求点到平面
的距离.
已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC、AD的中点.
(1)求证:DE∥平面PFB;
(2)已知二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.
已知函数,曲线
在点
处的切线为
,若
时,
有极值.
(1)求的值;
(2)求在
上的最大值和最小值.
已知正方体ABCD-A1B1C1D1,
O是底面ABCD对角线的交点.
(1)求证:A1C⊥平面AB1D1;
(2)求.
已知函数在
与
时都取得极值.
(1)求的值及函数
的单调区间;
(2)若对,不等式
恒成立,求
的取值范围.
如图,直线与抛物线
交于
两点,与
轴相交于点
,且
.
(1)求证:点的坐标为
;
(2)求证:;
(3)求的面积的最小值.