如图,四棱锥P—ABCD中,PD底面ABCD,AB//DC,AD
DC,AB=AD=1,DC=2,PD=
,M为棱PB的中点.
(1)证明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
已知数列满足:
,且存在大于1的整数k使
。
(1)用表示m(不必化简)
(2)用k表示m(化成最简形式)
(3)若m是正整数,求k与m的值;
已知:经过点的动圆与y轴交于M、N两点,C(-1,0),D(1,0)是x轴上两点,直线MC与
ND相交于P。
(1)求点P的轨迹E的方程;
(2)直线GH交轨迹E于G、H两点,并且(O是坐标原点),求点O到直线GH的距离。
已知a为实数,函数
(I)若函数的图象上有与x轴平行的切线,求a的取值范围;
(II)当时,对任意
恒成立,试求m的取值范围。
袋中有大小相同的5个球,其中黑球3个,白球2个,甲乙二人分别从中各取一个,甲先取(不放回)乙后取。规定:两人取到同颜色的球,由甲胜,取到不同颜色的球,则乙胜。
(1)分别求甲乙取到黑球的概率;
(2)甲乙二人谁胜的概率大,请说明理由。
如图在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,过D与PB垂直的平面分别交PB、PC于F、E。PD=DC。
(1)求证:DE⊥PC
(2)求证:PA//平面EDB;
(3)求二面角C—PB—D的大小。