四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD.已知
ABC=45o,AB=2,BC=2
,SA=SB=
.
(1)证明:SABC;
(2)求直线SD与平面SAB所成角的正弦值.
(12分)如图7-15,在正三棱柱ABC—A1B1C1中,各棱长都等于a,D、E分别是AC1、BB1的中点,
(1)求证:DE是异面直线AC1与BB1的公垂线段,并求其长度;
(2)求二面角E—AC1—C的大小;
(3)求点C1到平面AEC的距离。
(12分) 如图8-12,球面上有四个点P、A、B、C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,求这个球的表面积。
已知方程.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆与直线相交于M,N两点,且OM
ON(O为坐标原点)求
的值;
(3)在(2)的条件下,求以MN为直径的圆的方程.
如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE
(2)平面PAC平面BDE
(3)求二面角E-BD-A的大小。
已知圆和圆外一点
,求过点
的圆的切线方程。