已知数列{}的前n项和
(n为正整数)。
(1)令,求证数列{
}是等差数列,并求数列{
}的通项公式;
(2)令,
试比较
与
的大小,并予以证明.
已知点,
是抛物线
上相异两点,且满足
.
(Ⅰ)若的中垂线经过点
,求直线
的方程;
(Ⅱ)若的中垂线交
轴于点
,求
的面积的最大值及此时直线
的方程.
已知函数,
;
(Ⅰ)若函数在[1,2]上是减函数,求实数
的取值范围;
(Ⅱ)令,是否存在实数
,当
(
是自然对数的底数)时,函数
的最小值是
.若存在,求出
的值;若不存在,说明理由.
如图,在矩形中,
,点
在边
上,点
在边
上,且
,垂足为
,若将
沿
折起,使点
位于
位置,连接
,
得四棱锥
.
(Ⅰ)求证:;
(Ⅱ)若,直线
与平面
所成角的大小为
,求直线
与平面
所成角的正弦值.
设数列满足
,
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列
的前
项和
.
已知函数
(Ⅰ)若对任意,使得
恒成立,求实数
的取值范围;
(Ⅱ)证明:对,不等式
成立.