已知数列{}的前n项和
(n为正整数)。
(1)令,求证数列{
}是等差数列,并求数列{
}的通项公式;
(2)令,
试比较
与
的大小,并予以证明.
已知椭圆:
(
)的焦距为
,且过点
.
(1)求椭圆的方程和离心率;
(2)设(
)为椭圆
上一点,过点
作
轴的垂线,垂足为
.取点
,连
结,过点
作
的垂线交
轴于点
,点
是点
关于
轴的对称点.试判断直线
与椭圆
的位置关系,并证明你的结论.
设函数,
且
.曲线
在点
处的切线的斜率为.
(1)求的值;
(2)若存在,使得
,求
的取值范围.
设函数,
.
(1)当(
为自然对数的底数)时,求
的极小值;
(2)讨论函数零点的个数.
某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝
元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式;
(2)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
①假设花店在这天内每天购进
枝玫瑰花,求这
天的日利润(单位:元)的平均数;
②若花店一天购进枝玫瑰花,以
天记录的的各需求量的频率作为各需求量发生的概率,
【文科学生继续做】 求当天的利润不少于元的概率.
【理科学生继续做】 求当天的利润(单位:元)的分布列与数学期望.
在中,内角
所对的边分别是
.已知
,
,
.
(1)求的值;
(2)求的面积.