A高校自主招生设置了先后三道程序:部分高校联合考试、本校专业考试、本校面试.在每道程序中,设置三个成绩等级:优、良、中.若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序.考生只有全部通过三道程序,自主招生考试才算通过.某中学学生甲参加A高校自主招生考试,已知该生在每道程序中通过的概率均为,每道程序中得优、良、中的概率分别为p1、
、p2.
(1)求学生甲不能通过A高校自主招生考试的概率;
(2)设ξ为学生甲在三道程序中获优的次数,求ξ的分布列.
(满分15分)设函数,
,(其中
为自然底数);
(Ⅰ)求(
)的最小值;
(Ⅱ)探究是否存在一次函数使得
且
对一切
恒成立;若存在,求出一次函数的表达式,若不存在,说明理由;
(Ⅲ)数列中,
,
,求证:
。
(满分15分)动圆过定点
且与直线
相切,圆心
的轨迹为曲线
,过
作曲线
两条互相垂直的弦
,设
的中点分别为
、
.
(1)求曲线的方程;
(2)求证:直线必过定点.
某种鲜花进价每束元,售价每束
元,若卖不出,则以每束
元的价格处理掉。某节日需求量
(单位:束)的分布列为
![]() |
200 |
300 |
400 |
500 |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)若进鲜花束,求利润
的均值。
(Ⅱ)试问:进多少束花可使利润的均值最大?
(满分14分)已知.
(1)求的周期及其图象的对称中心;
(2)中,角
所对的边分别是
,满足
,求
的取值范围.
(本小题满分14分)
如图,已知椭圆,
是椭圆
的顶点,若椭圆
的离心率
,且过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)作直线,使得
,且与椭圆
相交于
两点(异于椭圆
的顶点),设直线
和直线
的倾斜角分别是
,求证:
.