有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第n(n=1,2,3)关时,需要抛掷n次骰子,当n次骰子面朝下的点数之和大于n2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.
(1)求仅闯过第一关的概率;
(2)记成功闯过的关数为ξ,求ξ的分布列.
已知椭圆的中心在原点,它的左右两个焦点分别为
,过右焦点
且与
轴垂直的直线
与椭圆
相交,其中一个交点为
(1) 求椭圆的方程。
(2)设椭圆的一个顶点为
直线
交椭圆
于另一点
,求
的面积.
如图所示的长方体中,底面
是边长为
的正方形,
为
与
的交点,
,
是线段
的中点.请建立空间直角坐标系解决以下问题:
(1)求证:平面
;
(2)求证:平面
;
(3)求二面角的大小.
在中,角
的对边分别为
,
,
的面积为
. (1)求
的值;(2)求
的值.
已知函数的定义域为
,
的定义域为
.
(1)求.
(2)记,若
是
的必要不充分条件,求实数
的取值范围。
已知函数
(Ⅰ)求的定义域和值域;
(Ⅱ)写出)的单调区间,并用定义证明
在所写区间上的单调性