在直角坐标系中,已知△ABC的顶点坐标为A,B
,C
.求△ABC在矩阵
作用下变换所得到的图形的面积.
已知是二次函数,不等式
的解集是(0,5),且
在区间[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在正整数m,使得方程在区间
内有且只有两个不等的实数根?若存在,求出所有m的值;若不存在,请说明理由.
已知函数,等比数列
的前n项和为
,数列
的前n项为
,且前n项和
满足
.
(1)求数列和
的通项公式:
(2)若数列前n项和为
,问使
的最小正整数n是多少?
已知椭圆的一个顶点为B(0,4),离心率
,直线
交椭圆于M,N两点.
(1)若直线的方程为y=x-4,求弦MN的长:
(2)如果BMN的重心恰好为椭圆的右焦点F,求直线
的方程.
如图,在四棱锥P-ABCD中,侧面PAD底面ABCD,侧棱
,底面ABCD为直角梯形,其中BC//AD,AB
AD,AD=2,AB=BC=l,E为AD中点.
(1)求证:PE平面ABCD:
(2)求异面直线PB与CD所成角的余弦值:
(3)求点A到平面PCD的距离.
已知实数.
(1)求直线y=ax+b不经过第四象限的概率:
(2)求直线y=ax+b与圆有公共点的概率.