设椭圆的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(1)求椭圆的离心率;
(2)若过三点的圆与直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
两点,线段
的中垂线与
轴相交于
,求实数
的取值范围.
已知函数.
(1)若直线与
的反函数的图象相切,求实数
的值;
(2)若,讨论函数
零点的个数.
小明同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系,
轴在地平面上的球场中轴线上,
轴垂直于地平面,单位长度为1米.已知若不考虑球网的影响,网球发射后的轨迹在方程
表示的曲线上,其中
与发射方向有关.发射器的射程是指网球落地点的横坐标.
(1)求发射器的最大射程;
(2)请计算在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标
最大为多少?并请说明理由.
如图,已知长方形中,
,
,
为
的中点.将
沿
折起,使得平面
平面
.
(1)求证:;
(2)若点是线段
上的一动点,问点
在何位置时,三棱锥
的体积与四棱锥
的体积之比为
?
如图,在平面直角坐标系中,
,
,
.
(1)求的面积;
(2)若函数的图象经过
、
、
三点,且
、
为
的图象与
轴相邻的两个交点,求
的解析式.
在等比数列中,公比
,
,前三项和
.
(1)求数列的通项公式;
(2)设,
,求数列
的前
项和
.