求经过直线L1:3x + 4y – 5 = 0与直线L2:2x – 3y + 8 = 0的交点M,且满足下列条件的直线方程:(1)与直线2x + y + 5 = 0平行;(2)与直线2x + y + 5 = 0垂直。
已知向量,设函数
,若函数
的图象与
的图象关于坐标原点对称.
(1)求函数在区间
上的最大值,并求出此时
的取值;
(2)在中,
分别是角
的对边,若
,
,
,求边
的长.
设,
分别是椭圆
:
的左、右焦点,过
作倾斜角为
的直线交椭圆
于
,
两点,
到直线
的距离为
,连接椭圆
的四个顶点得到的菱形面积为
.
(1)求椭圆的方程;
(2)已知点,设
是椭圆
上的一点,过
、
两点的直线
交
轴于点
,若
, 求
的取值范围;
(3)作直线与椭圆
交于不同的两点
,
,其中
点的坐标为
,若点
是线段
垂直平分线上一点,且满足
,求实数
的值.
已知函数.
(1)求的最小值;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设,试问函数
在
上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
在数列中,其前
项和为
,满足
.
(1)求数列的通项公式;
(2)设(
为正整数),求数列
的前
项和
.
如图,四棱锥中,
面
,
、
分别为
、
的中点,
,
.
(1)证明:∥面
;
(2)求面与面
所成锐角的余弦值.