游客
题文

,分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆,两点, 到直线的距离为,连接椭圆的四个顶点得到的菱形面积为.
(1)求椭圆的方程;
(2)已知点,设是椭圆上的一点,过两点的直线轴于点,若, 求的取值范围;
(3)作直线与椭圆交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

如图,四边形均为菱形,,且.

(1)求证:
(2)求证:
(3)求二面角的余弦值.

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元.

(1)写出关于的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的

数列的前项和为,且
(1)写出的递推关系式,并求,,的值;
(2)猜想关于的表达式,并用数学归纳法证明.

已知函数(其中)的最大值为2,最小正周期为.
(1)求函数的解析式;
(2)若函数图象上的两点的横坐标依次为为坐标原点,求的值.

如图,线段的两个端点分别分别在轴、轴上滑动,,点上一点,且,点随线段的运动而变化.

(1)求点的轨迹方程;
(2)设为点的轨迹的左焦点,为右焦点,过的直线交的轨迹于两点,求的最大值,并求此时直线的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号