已知圆的方程为,过点
作圆的两条切线,切点分别为
、
,直线
恰好经过椭圆
的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆
(
垂直于
轴的一条弦,
所在直线的方程为
且
是椭圆上异于
、
的任意一点,直线
、
分别交定直线
于两点
、
,求证
.
设是函数
的零点.
(1)证明:;
(2)证明:.
经过点且与直线
相切的动圆的圆心轨迹为
.点
、
在轨迹
上,且关于
轴对称,过线段
(两端点除外)上的任意一点作直线
,使直线
与轨迹
在点
处的切线平行,设直线
与轨迹
交于点
、
.
(1)求轨迹的方程;
(2)证明:;
(3)若点到直线
的距离等于
,且△
的面积为20,求直线
的方程.
已知,设命题
:函数
在区间
上与
轴有两个不同的交点;命题
:
在区间
上有最小值.若
是真命题,求实数
的取值范围.
等边三角形的边长为3,点
、
分别是边
、
上的点,且满足
(如图1).将△
沿
折起到△
的位置,使二面角
成直二面角,连结
、
(如图2).
(1)求证:平面
;
(2)在线段上是否存在点
,使直线
与平面
所成的角为
?若存在,求出
的长,若不存在,请说明理由.
已知正方形的边长为2,
分别是边
的中点.
(1)在正方形内部随机取一点
,求满足
的概率;
(2)从这八个点中,随机选取两个点,记这两个点之间的距离为
,求随机变量
的分布列与数学期望
.