正项数列{an}的前项和满足:-(n2+n-1)Sn-(n2+n)=0.
(1)求数列{an}的通项公式an;
(2)令bn=,数列{bn}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn<
.
设为数列
的前n项和,
,其中k是常数。
(Ⅰ)求;
(Ⅱ)若对于任意的成等比数列,求k的值。
在△ABC中,已知边上的中线BD=
,
求sinA的值。
已知函数(
且
).
(Ⅰ)当时,求证:函数
在
上单调递
增;
(Ⅱ)若函数有三个零点,求t的值;
(Ⅲ)若存在x1,x2∈[﹣1,1],使得,试求a的取值范围.
注:e为自然对数的底数。
已知A(1,1)是椭圆(
)上一点,F1,F2
是椭圆上的两焦点,且满足.
(I)求椭圆方程;
(Ⅱ)设C,D是椭圆上任两点,且直线AC,AD的斜率分别为 ,若存在常数
使
/,求直线CD的斜率.
在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分别是边A1A2,A2A3上的一点,沿线段BC,CD,DB分别将△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一点A。
(Ⅰ)求证:AB⊥CD;
(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。