已知椭圆+
=1(a>b>0)的左、右焦点分别为F1、F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
(1)求椭圆的标准方程;
(2)若P是椭圆上的任意一点,求的取值范围;
(3)已知直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的端点),AH⊥MN,垂足为H且=
,求证:直线l恒过定点.
已知直线的参数方程为
,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为
.
(1)把圆C的极坐标方程化为直角坐标方程;
(2)将直线向右平移h个单位,所得直线
与圆C相切,求h.
如图,AE是圆O的切线,A是切线,于
,割线EC交圆O于B,C两点.
(1)证明:O,D,B,C四点共圆;
(2)设,
,求
的大小.
已知.
(1)求函数的最大值;
(2)设,证明:
有最大值
,且
.
P为圆A:上的动点,点
.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且时,求点M的坐标.
如图,在斜三棱柱中,O是AC的中点,
平面
,
,
.
(1)求证:平面
;
(2)求二面角的余弦值.