安徽理)(如图,圆锥顶点为。底面圆心为
,其母线与底面所成的角为
。
和
是底面圆
上的两条平行的弦,轴
与平面
所成的角为
,
(1)证明:平面与平面
的交线平行于底面;
(2)求。
(本小题满分12分)
已知数列满足
,
.
⑴求证:数列是等比数列,并写出数列
的通项公式;
⑵若数列满足
,求数列
的前n项和
.
(本小题满分12分)
已知函数.
⑴求函数的最小正周期;
⑵在给定的坐标系内,用“五点作图法”画出函数在一个周期内的图象.
(本小题满分10分)选修4-5:不等式选讲.
已知函数
⑴解不等式;
⑵若不等式的解集为空集,求
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程选讲.
在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.
⑴求圆C的极坐标方程;
⑵是圆
上一动点,点
满足
,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.
(本小题满分10分)选修4-1:几何证明选讲.
如图,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
⑴证明:圆心O在直线AD上;
⑵证明:点C是线段GD的中点.