如图,已知点是离心率为
的椭圆
:
上的一点,斜率为
的直线
交椭圆
于
,
两点,且
、
、
三点互不重合.
(1)求椭圆的方程;(2)求证:直线
,
的斜率之和为定值.
(本小题满分12分)在中,角
、
、
所对的边分别为
、
、
,已知
.
(1)求的大小;
(2)若,求
的取值范围.
(本小题满分l0分)选修4—5:不等式选讲
已知函数
(1)当时,解不等式
;
(2)若存在,使得,
成立,求实数
的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系中,圆
的参数方程
为参数).以
为极点,
轴的非负半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)直线的极坐标方程是
,射线
与圆
的交点为
,与直线
的交点为
,求线段
的长.
(本小题满分10分)选修4—1:几何证明选讲
如图所示,为圆
的切线,
为切点,
,
的角平分线与
和圆
分别交于点
和
.
(1)求证
(2)求的值.
(本小题满分12分)已知函数,其中常数
.
(1)当时,求函数
的极大值;
(2)试讨论在区间
上的单调性;
(3)当时,曲线
上总存在相异两点
,
,使得曲线
在点
处的切线互相平行,求
的取值范围.