游客
题文

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 
喜爱打篮球
不喜爱打篮球
合计
男生
 
5
 
女生
10
 
 
合计
 
 
50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求不全被选中的概率.
下面的临界值表供参考:


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

(参考公式:

科目 数学   题型 解答题   难度 中等
知识点: 随机抽样 随机事件
登录免费查看答案和解析
相关试题

(本小题满分14分)已知,函数
(1)求的单调区间;
(2)证明:当时,

(本小题满分14分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点. 直线交椭圆于不同的两点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不过点,求证:直线轴围成一个等腰三角形.

(本小题满分14分)若正项数列的前项和为,首项,点)在曲线上.源:
(1)求数列的通项公式
(2)设表示数列的前项和,求证:.

(本小题满分14分)
如图所示,在所有棱长都为的三棱柱中,侧棱点为棱的中点.

(1)求证:∥平面
(2)求四棱锥的体积.

(本小题满分12分)某班名学生在一次百米测试中,成绩全部介于秒与秒之间,将测试结果按如下方式分成五组:第一组,第二组, ,第五组,下图是按上述分组方法得到的频率分布直方图.

(1)根据频率分布直方图,估计这名学生百米测试成绩的平均值;
(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号