某电视台组织部分记者,用“10分制”随机调查某社区居民的幸福指数.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福指数的得分(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福指数不低于9.5分,则称该人的幸福指数为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求
的分布列及数学期望.
(本小题满分12分)某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第个月的利润
(单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第
个月的当月利润率
,例如:
.
(Ⅰ)求
;(Ⅱ)求第
个月的当月利润率
;
(Ⅲ)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率.
(本小题满分12分)椭圆:
的左、右焦点分别为
,焦距为2,,过
作垂直于椭圆长轴的弦长
为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过的直线l交椭圆于
两点.并判断是否存在直线l使得
的夹角为钝角,若存在,求出l的斜率k的取值范围。
(本小题满分12分)已知函数.
(Ⅰ) 求函数的最小值和最小正周期;
(Ⅱ)已知内角
的对边分别为
,且
,若向量
与
共线,求
的值.
(本小题满分12分)在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1
(Ⅰ)求证:DC∥平面ABE;
(Ⅱ)求证:AF⊥平面BCDE;
(Ⅲ)求证:平面AFD⊥平面AFE.
(本小题满分12分)
在数列中,
为常数,
,且
成公比不等
于1的等比数列.
(Ⅰ)求的值;
(Ⅱ)设,求数列
的前
项和