(本小题满分12分)椭圆:
的左、右焦点分别为
,焦距为2,,过
作垂直于椭圆长轴的弦长
为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过的直线l交椭圆于
两点.并判断是否存在直线l使得
的夹角为钝角,若存在,求出l的斜率k的取值范围。
已知ABCD-A′B′C′D′是平行六面体.
(1)化简++,并在图形中标出其结果;
(2)设M是底面ABCD的中心,N是侧面BCC′B′的对角线BC′上的点,且BN∶NC′=3∶1,设=α+β+γ,试求α,β,γ之值.
试用向量证明三垂线定理及其逆定理.
如右图,A、B、C、D为空间四点.在△ABC中,AB=2,AC=BC=.等边三角形ADB以AB为轴运动.
(1)当平面ADB⊥平面ABC时,求CD;
(2)当△ADB转动时,是否总有AB⊥CD?
证明你的结论.
如右图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=.
(1)求证:PA⊥平面ABCD;
(2)求四棱锥P-ABCD的体积
如右图所示,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)求三棱锥E—PAD的体积;
(2)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(3)证明:无论点E在边BC的何处,都有PE⊥AF.