从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) |
![]() |
![]() |
![]() |
![]() |
频数(个) |
5 |
10 |
20 |
15 |
(1)根据频数分布表计算苹果的重量在的频率;
(2)用分层抽样的方法从重量在和
的苹果中共抽取4个,其中重量在
的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在和
中各有1个的概率.
若向量,且
(1)求;
(2)求函数的值域
已知直线所经过的定点
恰好是椭圆
的一个焦点,且椭圆
上的点到点
的最大距离为3.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知圆,直线
.试证明:当点
在椭圆
上运动时,直线
与圆
恒相交,并求直线
被圆
所截得弦长
的取值范围.
(Ⅲ)设直线与椭圆交于
两点,若直线
交
轴于点
,且
,当
变化时,求
的值;
已知函数处有两上不同的极值点,设
在点
处切线为
其斜率为
;在点
利的切线为
,其斜率为
(1)若和
的值
(2)若,求
的取值范围。
本小题满分12分)
设各项为正的数列的前
项和为
且满足:
(Ⅰ)求;(Ⅱ)若
求证:
(本小题满分12分)
在四棱锥中,
,
,
底面
,
,直线
与底面
成
角,点
分别是
的中点.
(1)求二面角的大小;
(2)当的值为多少时,
为直角三角形.