如图,一不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0kg的小球。现将小球拉到A点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点。地面上的D点与OB在同一竖直线上,已知绳长L=1.0m,B点离地高度H=1.0m,A、B两点的高度差h=0.5m,重力加速度g取10m/s2,不计空气阻力影响,求:
⑴地面上DC两点间的距离s;⑵轻绳所受的最大拉力大小。
一辆长途客车正在以的速度匀速行驶.突然,司机看见车的正前方
处有一只狗如图(甲)所示,司机立即采取制动措施.若从司机看见狗开始计时(
),长途客车的“速度-时间”图象如图(乙)所示。
(1)求长途客车从司机发现狗至停止运动的这段时间内前进的距离;
(2)求长途客车制动时的加速度;
(3)若狗正以的速度与长途客车同向奔跑,问狗能否摆脱被撞的噩运?
(8分)火车以15m/s的速度前进,现在需要在某站停车,以便旅客上下车,如果停留时间是1min,刹车引起的加速度大小是0.30m/s2,开始时发动机产生的加速度是0.50m/s2,如果火车暂停后仍然要以15m/s的速度前进,求火车由于暂停所耽误的时间?
一物体做匀加速直线运动,初速度为0.5 m/s,第7 s内的位移比第5 s内的位移多4 m,求:(1)物体的加速度; (2)物体在5 s内的位移
如图所示为某一仪器的部分原理示意图,虚线OA、OB关于y轴对称,, OA、OB将xOy平面分为Ⅰ、Ⅱ、Ⅲ三个区域,区域Ⅰ、Ⅲ内存在水平方向的匀强电场,电场强度大小相等、方向相反。质量为m电荷量为q的带电粒子自x轴上的粒子源P处以速度v0沿y轴正方向射出,经一定时间到达OA上的M点,且此时速度与OA垂直。已知M到原点O的距离OM = L,不计粒子的重力。求:
(1)匀强电场的电场强度E的大小;
(2)为使粒子能从M点经Ⅱ区域通过OB上的N点,M、N点关于y轴对称,可在区域Ⅱ内适当范围加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域Ⅲ到达x轴上Q点的横坐标;
(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域内。由于某种原因的影响,粒子经过M点时的速度并不严格与OA垂直,成散射状,散射角为(
较小),但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度。
如图所示,在直角坐标系的原点O 处有一放射源,向四周均匀发射速度大小相等、方向都平行于纸面的带电粒子。在放射源右侧有一很薄的挡板,垂直于x 轴放置,挡板与xoy 平面交线的两端M、N 正好与原点O 构成等边三角形,O′ 为挡板与x 轴的交点。在整个空间中,有垂直于xoy 平面向外的匀强磁场(图中未画出),带电粒子在磁场中沿顺时针方向做匀速圆周运动。已知带电粒子的质量为m,带电荷量大小为q,速度大小为υ,MN 的长度为L。(不计带电粒子的重力及粒子间的相互作用)
(1)确定带电粒子的电性;
(2)要使带电粒子不打在挡板上,求磁感应强度的最小值;
(3)要使MN 的右侧都有粒子打到,求磁感应强度的最大值。(计算过程中,要求画出各临界状态的轨迹图)