通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
|
男 |
女 |
总计 |
爱好 |
40 |
20 |
60 |
不爱好 |
20 |
30 |
50 |
总计 |
60 |
50 |
110 |
附:
![]() |
0.050 |
0.010 |
0.001 |
![]() |
3.841 |
6.635 |
10.828 |
试考查大学生“爱好该项运动是否与性别有关”,若有关,请说明有多少把握。
如图:在四棱台ABCD-A1B1C1D1中,DD1垂直底面,且DD1=2,底面四边形ABCD与A1B1C1D1分别为边长2和1的正方形.
(1)求直线DB1与BC1夹角的余弦值;
(2)求二面角A-BB1-C的余弦值.
如图,空间四边形OABC各边以及AC,BO的边长都为,点D,E分别是边OA,BC的中点,连结DE
(1)计算DE的长; (2)求A点到平面OBC的距离.
本题满分10分)解关于的不等式
对于函数,若存在
,使得
成立,称
为不动点,已知函数
(1)当时,求函数
不动点;
(2)若对任意的实数,函数
恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若图象上A,B两点的横坐标是函数
不动点,且
两点关于直线
对称,求b的最小值.
已知数列为等差数列,
,
,数列
的前
项和为
,且有
(1)求、
的通项公式;
(2)若,
的前
项和为
,求
.