游客
题文

为了寻找马航残骸,我国“雪龙号”科考船于2014年3月26日从港口出发,沿北偏东角的射线方向航行,而在港口北偏东角的方向上有一个给科考船补给物资的小岛海里,且.现指挥部需要紧急征调位于港口正东海里的处的补给船,速往小岛装上补给物资供给科考船.该船沿方向全速追赶科考船,并在处相遇.经测算当两船运行的航线与海岸线围成的三角形的面积最小时,这种补给方案最优.

(1)求关于的函数关系式
(2)应征调位于港口正东多少海里处的补给船只,补给方案最优?

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

数列中,是常数,),且成公比不为的等比数列。
(Ⅰ)求的值;
(Ⅱ)求的通项公式。

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分
(1)(本小题满分7分)选修4-2:矩阵与变换
变换是将平面上每个点的横坐标乘,纵坐标乘,变到点.
(Ⅰ)求变换的矩阵;
(Ⅱ)圆在变换的作用下变成了什么图形?
(2)(本小题满分7分)选修4-4:坐标系与参数方程
已知极点与原点重合,极轴与x轴的正半轴重合.若曲线的极坐标方程为:,直线的参数方程为:为参数).
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)直线上有一定点,曲线交于M,N两点,求的值.
(3)(本小题满分7分)选修4-5:不等式选讲
已知为实数,且
(Ⅰ)求证:
(Ⅱ)求实数m的取值范围.

定义函数其导函数记为.
(Ⅰ)求的单调递增区间;
(Ⅱ)若,求证:
(Ⅲ)设函数,数列项和为,,其中.对于给定的正整数,数列满足,且,求.

已知椭圆的离心率为,直线过点,且与椭圆相切于点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的动直线与曲线相交于不同的两点,曲线在点处的切线交于点.试问:点是否在某一定直线上,若是,试求出定直线的方程;否则,请说明理由.

有甲、乙等7名选手参加一次演讲比赛,采用抽签的方式随机确定每名选手的演出顺序(序号为1,2,…,7).
(Ⅰ)甲选手的演出序号是1的概率;
(Ⅱ)求甲、乙两名选手的演出序号至少有一个为奇数的概率;
(Ⅲ)设在甲、乙两名选手之间的演讲选手个数为,求的分布列与期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号