已知曲线的方程为
,过原点作斜率为
的直线和曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,如此下去,一般地,过点
作斜率为
的直线与曲线
相交,另一个交点记为
,设点
(
).
(1)指出,并求
与
的关系式(
);
(2)求(
)的通项公式,并指出点列
,
,
,向哪一点无限接近?说明理由;
(3)令,数列
的前
项和为
,试比较
与
的大小,并证明你的结论.
已知数列是首项为
,公比
的等比数列,设
,数列
.
(1)求数列的通项公式;(2)求数列
的前n项和Sn.
一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分。
(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;
(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分的概率分布列及数学期望。
△ABC中,a,b,c分别是角A,B,C的对边,,且
,
(Ⅰ)求△ABC的面积;(Ⅱ)若a=7,求角∠C
已知函数,
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根
,请求出一个长度为
的区间
,使
;如果没有,请说明理由?(注:区间
的长度
).
已知两直线,求分别满足下列条件的
、
的值.
(1)直线过点
,并且直线
与直线
垂直;
(2)直线与直线
平行,并且坐标原点到
、
的距离相等.