已知椭圆的离心率
,且直线
是抛物线
的一条切线.
(1)求椭圆的方程;
(2)点P 为椭圆上一点,直线
,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.
(本小题满分12分)两个代表队进行乒乓球对抗赛,每队三名队员,
队队员是
,
队队员是
,按以往多次比赛的统计,对阵队员之间的胜负概率如下:
对阵队员 |
![]() |
![]() |
![]() ![]() |
![]() |
![]() |
![]() ![]() |
![]() |
![]() |
![]() ![]() |
![]() |
![]() |
现按表中对阵方式出场,每场胜队得1分,负队得0分,设A队,B队最后所得总分分别为.
(1)求的概率分布列;
(2)求,
.
(本小题满分12分)已知函数的定义域为
,且同时满足下列条件:
(1)是奇函数;
(2)在定义域上单调递减;(3)
求
的取值范围.
(本小题满分12分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过
检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等
品.
(Ⅰ) 随机选取1件产品,求能够通过检测的概率;
(Ⅱ) 随机选取3件产品,其中一等品的件数记为,求
的分布列;
(Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.
(本小题满分12分)已知函数,
,且
(1)求函数定义域
(2)判断函数的奇偶性,并说明理由.
(本小题12分)已知数列中,
,且点
在直线
上.
(1) 求数列的通项公式;
(2) 若函数,求证