游客
题文

已知椭圆的离心率,且直线是抛物线的一条切线.
(1)求椭圆的方程;
(2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知函数
(1)求曲线在点处的切线方程;
(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

若关于的不等式的解集是的定义域是,
,求实数的取值范围。

是函数在点附近的某个局部范围内的最大(小)值,则称是函数的一个极值,为极值点.已知,函数
(Ⅰ)若,求函数的极值点;
(Ⅱ)若不等式恒成立,求的取值范围.
为自然对数的底数)

如图,已知抛物线的焦点在抛物线上,点是抛物线上的动点.

(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过点作抛物线的两条切线,分别为两个切点,设点到直线的距离为,求的最小值.

如图,在△中,,点上,.沿将△翻折成△,使平面平面;沿将△翻折成△,使平面平面

(Ⅰ)求证:平面
(Ⅱ)设,当为何值时,二面角的大小为

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号