游客
题文

已知椭圆的离心率,且直线是抛物线的一条切线.
(1)求椭圆的方程;
(2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

如图,在直角梯形ABCD中,,且E、F分别为线段CD、AB上的点,且.将梯形沿EF折起,使得平面平面BCEF,折后BD与平面ADEF所成角正切值为

(Ⅰ)求证:平面BDE
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

一个口袋中有红球3个,白球4个.
(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;
(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).

中,分别为内角对边,且
(Ⅰ)求
(Ⅱ)若,求的值.

已知数列{an}的前n项和为Sn,且Sn=,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡。
(1)求an,bn
(2)求数列{an·bn}的前n项和Tn

若不等式kx2-2x+6k<0(k≠0)。
(1)若不等式解集是{x|x<-3或x>-2},求k的值;
(2)若不等式解集是R,求k的取值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号