如图,直三棱柱中,
,
,
是
的中点,△
是等腰三角形,
为
的中点,
为
上一点.
(1)若∥平面
,求
;
(2)平面将三棱柱
分成两个部分,求较小部分与较大部分的体积之比.
( 12分)
已知在
与
时都取得极值.
(Ⅰ)求的值;
(Ⅱ)若,求
的单调区间和极值。
在⊿ABC中,BC=,AC=3,sinC=2sinA
(I) 求AB的值:
(II) 求sin的值
已知数列,
满足
,其中
.
(Ⅰ)若,求数列
的通项公式;
(Ⅱ)若,且
.
(ⅰ)记,求证:数列
为等差数列;
(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次. 求首项
应满足的条件.
设函数
(Ⅰ)当时,求
的最大值;
(Ⅱ)令,(
),其图象上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;
(Ⅲ)当,
,方程
有唯一实数解,求正数
的值.
设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:
与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求
面积的最大值.