游客
题文

已知函数,其中为常数,.
(1)当时,求曲线在点处的切线方程;
(2)是否存在实数,使的极大值为?若存在,求出的值;若不存在,说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 函数的基本性质
登录免费查看答案和解析
相关试题

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点,将△ACD沿折起,使平面ACD⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形,PA=AB=2,M, N分别为PA, BC的中点.
(Ⅰ)证明:MN∥平面PCD;
(Ⅱ)求MN与平面PAC所成角的正切值.

已知直线l1:2x-y+2=0与l2:x+2y-4=0,点P(1, m).
(Ⅰ)若点P到直线l1, l2的距离相等,求实数m的值;
(Ⅱ)当m=1时,已知直线l经过点P且分别与l1, l2相交于A, B两点,若P恰好
平分线段AB,求A, B两点的坐标及直线l的方程.

如图,已知点A(2,3), B(4,1),△ABC是以AB为底边的等腰三角形,点C在直线l:x-2y+2=0上.
(Ⅰ)求AB边上的高CE所在直线的方程;
(Ⅱ)求△ABC的面积.

如图,已知圆锥的轴截面ABC是边长为2的正三角形,O是底面圆心.
(Ⅰ)求圆锥的表面积;
(Ⅱ)经过圆锥的高AO的中点O¢作平行于圆锥底面的截面,
求截得的圆台的体积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号