已知椭圆C:
=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c=
b.过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.
(1)求椭圆C的方程;
(2)若直线l1的斜率为-1,求△PMN的面积;
(3)若线段MN的中点在x轴上,求直线MN的方程.
(本小题满分10分)设f(x)=x3-
-2x+5.
(1)求f(x)的单调区间;
(2)当x∈[1,2]时,存在f(x)<m成立,求实数m的取值范围.
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,A为弧CE的重点,DE交AB于点F,且AB=2BP=4,求PF的长度。
(本小题满分12分)
已知定义在
上的函数
,其中
为大于零的常数.
(Ⅰ)当
时,令
,求证:当
时,
(
为自然对数的底数);
(Ⅱ)若函数
,在
处取得最大值,求
的取值范围.
(本小题满分12分)
已知函数
的导函数
,数列
的前
项和为
,点
均在函数
的图象上.
(Ⅰ)求数列
的通项公式及
的最大值;
(Ⅱ)令
,其中
,求
的前
项和.
(本小题满分12分)
如图,
为圆
的直径,点
、
在圆
上,且
,矩形
所在的平面和圆
所在的平面互相垂直,且
,
.
(Ⅰ)求四棱锥
的体积
;(Ⅱ)求证:平面
平面
;
(Ⅲ)在线段
上是否存在一点
,使得
平面
,并说明理由.